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Abstract: A numerical study of phase controlled soliton self-switching in a fiber coupler with saturating 
nonlinearity is reported. It has been observed that it is crucial to control the saturation parameter in order to achieve 
useful transmission characteristics. The influence of perturbative effects, like cross-phase modulation, third-order 
dispersion, Raman effect, and self steepening effect, are also included. 
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Nonlinear directional couplers have been studied extensively in the context of all-optical soliton 
switching after the pioneering work of Jensen [1], Maier [2] and Trillo et al. [3].  Since the work of Trillo 
et al. [3] there has been a great deal of activity in studying various aspects of soliton switching in NLDCs 
[4-17].  Jensen and Maier showed that one can switch a continuous signal from one core to the other by 
varying the input power of the signal.  The idea when applied to pulse switching led to pulse distortion 
and breakup, resulting in inefficient switching.  Trillo et al. [3] showed that pulse break up could be 
avoided, if one used soliton pulse as a signal.  Switching of soliton can also be achieved by controlling the 
phase of the input signal [4].  Recently a thorough study of this aspect of switching is carried out in 
details by Sarma and Kumar [5], however their study restricted completely to the case of Kerr 
nonlinearity only. It has been observed that fibers made of silica glass doped with semi-conductor or 
organic crystallites do not exhibit Kerr nonlinearity [6, 8-10]. For such fibers nonlinear addition to the 
refractive index saturates even at moderate powers and the corresponding nonlinearity coefficient  2n  has 
values several orders of magnitude higher than for pure silica glass [18].  In this work we are addressing 
this important issue of saturation nonlinearity and discuss soliton self-switching in a fiber coupler made of 
silica glass doped with semi-conductor or organic crystallites. This study may also be applicable to highly 
nonlinear dual-core holey fiber coupler [10].  
   We consider a homogeneous and isotropic nonlinear directional coupler made of silica glass doped with 
semi-conductor or organic crystallites.  The pulse evolution equation, known as the coupled nonlinear 
Schrödinger equations (CNLSE), inside the coupler is derived in the framework of the coupled mode 
formalism [18], using the standard slowly varying envelope approximation.  
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where 1A and 2A  are the slowly varying pulse envelopes in core1 and core2, respectively. 

Here, )1( 2
0 Abs−≈ γγ , effAcn /20 ωγ =  is the nonlinear parameter, where 2n  is the nonlinear Kerr-

coefficient, c  is the speed of light in free space and effA  is the effective core area.  Also, sb is the 
saturation parameter governing the power level at which the nonlinearity begins to saturate. (For detailed 
discussion on the saturation of the nonlinearity, refer to the references [19, 20]) 2β and 3β are the 2nd and 
3rd order dispersion coefficients, respectively.  The sixth and the seventh terms in equations (1) and (2) 
take into account the self-steepening and the intrapulse Raman scattering, respectively.  RT  is the Raman 
response time. 0C  is the coupling constant.  Using the well-known soliton units [18],  
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where 0T  is the width of the incident pulse, 2

2
0 / βTLD = is the dispersion length, 0P  is the input pulse 

peak power.  Equations (1) and (2) can be written in the following normalized form: 
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where 11 NUu = and 22 NUu = . N is known as the order of the soliton. The parameters N , 

Rs τδ ,, 13  and 0κ  are defined as   
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where the nonlinear length is given by )/1( 0PLNL γ= . Thus, 130 ,, sδκ and Rτ , respectively, are, the 
normalized linear coupling coefficient, TOD coefficient, self-steepening coefficient, and Raman co-
efficient. s  is a dimensionless parameter, 2

002 / Tbs s γβ=  called the normalized saturation parameter 
[10].  The above system of CNLSEs is the basic system of equations in this work. 
   We solve the set of Eqs. (4) and (5) numerically by the split-step Fourier method for the linear 
dispersive part and by the fourth-order Runge-Kutta method, for the nonlinear part with auto-control of 
the step size for a given accuracy of the results.  
   We calculate the transmission coefficient T , representing the fractional output energy or equivalently 
output fractional power in the first core after propagation of one coupling length of the coupler by the 
soliton pulse, according to the formula                  
                                                                                                                                                  
                                                                                                        .                                              (6) 
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The initial conditions for our numerical integration are [4] 
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where χκ −= 1/4 000 pu , 0p is the input peak power of the soliton. 
   The initial conditions correspond to the case when a soliton of a given pulse duration is launched into 
the first core while a weak signal of the same pulse duration, having a peak power ratio f and an initial 
relative phase of φ , is launched in the second core.  In this context, it should be noted that in this work 
we adhere to the usual notion of switching in which a signal launched into the input core emerges from 
the same core at the output, after traversing one coupling length inside the coupler.  The results are 
presented in the form of plots of T as a function of the relative phase φ  of the control pulse.  We are 
taking 5=f  and 0.20 =P for our study as suggested by the work of Trillo and Wabnitz [4].  The 
normalized saturation parameter is taken to be 1.0=s  following the work of [10].  In this work 
calculations are done for 1.00 =κ . 
   In order to see the effect of cross-phase modulation on the transmission characteristics of the coupler, in 
Fig. 1 we plot transmission versus phase for different values of the XPM parameter. It is observed from 
Fig. 1 that the transmission characteristic of the coupler is enhanced with increase in the XPM parameter.  
 

 
Fig. 1.  Transmission vs. phase for different χ  

 
For example it may be observed that, for πφ 17.0= , the transmission corresponds to 87%, 92% and 96% 
for χ =0, 0.05 and 0.1 respectively.  It should be noted that the cross-phase modulation parameter is very 
small in practice for a fiber coupler, it cannot be increased indefinitely [21].  The effect of third-order 
dispersion, the Raman and the self-steepening one can also be studied in the similar way.  In Figs. 2-4 we 
depict the transmission coefficient a function of the phase of the control pulse in the presence of third-
order dispersion, the Raman effect and the self-steepening effect respectively. 
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Fig. 2.  Transmission vs. phase for different TOD coefficient 

 

Fig. 3.  Transmission vs. phase for different Raman coefficient 
 
   It can be easily observed from these figures that the transmission characteristics of the coupler get 
deteriorated with increase in the TOD and Raman coefficient.  However the presence of self-steepening 
effect has no influence on the switching characteristics of the coupler.  In order to find the role of the 
normalized saturation parameter on the switching characteristics of the coupler distinctly, in Fig. 5, we 
plot the transmission as a function of the saturation parameter in the simultaneous presence of all the 
perturbative effects.  We have taken the following optimum parameters for our computation: 

1.0;1.0;05.0,1.0 1 ==== sRτδχ and πφ 17.0= .  It can be observed from Fig. 5 that as long as we 
keep the normalized saturation parameter below 0.15 we get fairly good transmission characteristics. This 
parameter may be controlled either by choosing the pulse width of the soliton judiciously or by taking the 
appropriate doping material. 
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Fig. 4.  Transmission vs. phase for different self-steepening coefficient. 

 

 
Fig. 5.  Transmission vs. saturation parameter. 

 
   Finally to check the stability of the soliton pulse during its evolution inside the coupler, in Figs. 6 and 7 
we plot the spatio-temporal evolution of the pulse in core 1 and 2 respectively.  It is easily noticed that the 

 
 

Fig. 6.  Spatio-temporal evolution of soliton pulse in core 1 of the coupler. 
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Fig. 7.  Spatio-temporal evolution of soliton pulse in core 2 of the coupler. 

 
soliton is preserved and stable inside the coupler during its evolution. 
   In this work we have carried out a numerical study of phase induced soliton self-switching in a fiber 
coupler with saturating nonlinearity.  It has been observed that it is crucial to control the saturation 
parameter in order to achieve useful transmission characteristics. The influence of perturbative effects like 
XPM, TOD, Raman and self steepening is also carried out.  It is found that while XPM enhances the 
switching characteristics, TOD and Raman influences in a negative way. Self-steepening has absolutely 
no effect on the transmission characteristics of the coupler.  It is possible to use this coupler as a useful 
switching device if the parameters and phase of the control pulse are chosen judiciously. 
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